Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Abstract The intriguing functionalities of emerging quasi‐2D metal halide perovskites (MHPs) have led to further exploration of this material class for sustainable and scalable optoelectronic applications. However, the chemical complexities in precursors—primarily determined by the 2D:3D compositional ratio—result in uncontrolled phase heterogeneities in these materials, which compromises the optoelectronic performances. Yet, this phenomenon remains poorly understood due to the massive quasi‐2D compositional space. To systematically explore the fundamental principles, herein, a high‐throughput automated synthesis‐characterization workflow is designed and implemented to formamidinium (FA)‐based quasi‐2D MHP system. It is revealed that the stable 3D‐like phases, where the α‐FAPbI3surface is passivated by 2D spacers, exclusively emerge at the compositional range (35–55% of FAPbI3), deviating from the stoichiometric considerations. A quantitative crystallographic study via high‐throughput grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) experiments integrated with automated peak analysis function quickly reveals that the 3D‐like phases are vertically aligned, facilitating vertical charge conduction that can be beneficial for optoelectronic applications. Together, this study uncovers the optimal 2D:3D compositional range for complex quasi‐2D MHP systems, realizing promising optoelectronic functionalities. The automated experimental workflow significantly accelerates materials discoveries and processing optimizations that are transferrable to other deposition methods, while providing fundamental insights into complex materials systems.more » « lessFree, publicly-accessible full text available December 1, 2025
-
One of the organic components in the perovskite photo-absorber, the methylammonium cation, has been suggested to be a roadblock to the long-term operation of organic–inorganic hybrid perovskite-based solar cells. In this work we systematically explore the crystallographic and optical properties of the compositional space of mixed cation and mixed halide lead perovskites, where formamidinium (FA + ) is gradually replaced by cesium (Cs + ), and iodide (I − ) is substituted by bromide (Br − ), i.e. , Cs y FA 1− y Pb(Br x I 1− x ) 3 . Higher tolerance factors lead to more cubic structures, whereas lower tolerance factors lead to more orthorhombic structures. We find that while some correlation exists between the tolerance factor and structure, the tolerance factor does not provide a holistic understanding of whether or not a perovskite structure will fully form. By screening 26 solar cells with different compositions, our results show that Cs 1/6 FA 5/6 PbI 3 delivers the highest efficiency and long-term stability among the I-rich compositions. This work sheds light on the fundamental structure–property relationships in the Cs y FA 1− y Pb(Br x I 1− x ) 3 compositional space, providing vital insight to the design of durable perovskite materials. Our approach provides a library of structural and optoelectronic information for this compositional space.more » « less
-
null (Ed.)Successful implementation of hot carrier solar cells requires preserving high carrier temperature as carriers migrate through the active layer. Here, we demonstrated that addition of alkali cations in hybrid organic-inorganic lead halide perovskites led to substantially elevated carrier temperature, reduced threshold for phonon bottleneck, and enhanced hot carrier transport. The synergetic effects from the Rb, Cs, and K cations result in ~900 K increase in the effective carrier temperature at a carrier density around 10 18 cm −3 with an excitation 1.45 eV above the bandgap. In the doped thin films, the protected hot carriers migrate 100 s of nanometers longer than the undoped sample as imaged by ultrafast microscopy. We attributed these improvements to the relaxation of lattice strain and passivation of halide vacancies by alkali cations based on x-ray structural characterizations and first principles calculations.more » « less
An official website of the United States government
